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Multivariate Financial Time Series and Volatility models with applications to
Tactical Asset Allocation

by Markus Andersson

Royal Institute of Technology (KTH)

Department of Mathematical Statistics

Abstract

The �nancial markets have a complex structure and the modelling techniques have recently been
more and more complicated. So for a portfolio manager it is very important to �nd better and
more sophisticated modelling techniques especially after the 2007-2008 banking crisis. The idea
in this thesis is to �nd the connection between the components in macroeconomic environment
and portfolios consisting of assets from OMX Stockholm 30 and use these relationships to perform
Tactical Asset Allocation (TAA). The more speci�c aim of the project is to prove that dynamic
modelling techniques outperform static models in portfolio theory.

Keywords: Multivariate Financial Time Series, Multivariate Volatility Models, Modern Portfolio
Theory (MPT), Tactical Asset Allocation (TAA)

i





Multivariata �nansiella tidsserier och volatilitetsmodeller med tillämpningar
för Taktisk tillgångsallokering

Markus Andersson

Kungliga Tekniska Högskolan (KTH)

Avdelningen för Matematisk Statistik

Abstract

Den �nansiella marknaden är av en väldigt komplex struktur och modelleringsteknikerna har under
senare tid blivit allt mer komplicerade. För en portföljförvaltare är det av yttersta vikt att �nna mer
so�stikerade modelleringstekniker, speciellt efter �nanskrisen 2007-2008. Idéen i den här uppsatsen
är att �nna ett samband mellan makroekonomiska faktorer och aktieportföljer innehållande tillgån-
gar från OMX Stockholm 30 och använda dessa för att utföra Tactial Asset Allocation (TAA). Mer
speci�kt är målsättningen att visa att dynamiska modelleringstekniker har ett bättre utfall än mer
statiska modeller i portföljteori.

Nyckelord: Multivariata �nansiella tidsserier, Multivariata volatilitets modeller, Modern portföljte-
ori (MPT), Taktisk tillgångsallokering (TAA)
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Chapter 1

Introduction

In the case of mutual-traded funds there are two forms of portfolio management: passive and active.
Passive management usually tracks a market index, but can also be considered as a equally weighted
buy and hold strategy which is the case in this thesis. Active management involves a manager or a
team who attempt to beat the passive strategy return.

In Modern Portfolio Theory (MPT) expected returns and the variace-covariance matrix has to
be estimated in order to compute portfolio weights. Traditionally the expected returns have been
calculated as the mean of historical returns and the variance-covarance matrix has been calculated
in its time-invariant form. The idea in this thesis is to put e�ort in building a time series model, i.e.
a VAR(1)-model and compute the expected returns with a one-step-ahead forecast and estimate the
time-varying variance-covariance matrix with a multivariate volatility model i.e. the EWMA-model.
The purpose within this framework is to try to outperform a time-invariant modelling technique
with a time-varying one. The impact of macroeconomic factors i.e. Purchaser Managers Index
(PMI) and Consumer Price Index (CPI) are also studied. The main idea for building the models
are from the papers by Flavin and Wickens (1998) and (2001) but applied to Swedish stock data
and macroeconomic factors.

The stock data to form di�erent portfolios are collected from OMX Stockholm, the PMI data
comes from Swedbank and CPI from SCB. All the datasets are in monthly frequency and the stock
data is from January 2004 to June 2015, i.e 138 months. The PMI data is from January 2004 to May
2015, i.e. 137 months, �nally the CPI data is from February 2004 to May 2015, i.e. 136 months.
The stock data and PMI are transformed into log returns while CPI is already a return series, the
only transformation in this case is to divide the series by 100 in order to get the percentage returns
into decimal form.

The idea in this thesis is to use a backtesting technique for model valuation, consisting of time
series data with a moving window consisting of 127 monthly returns. In each time window, the ex-
pected returns µ̂̂µ̂µ and the time-invariant variance-covariance matrix Σ̂̂Σ̂Σ or the time-varying one Σ̂̂Σ̂Σt are
computed in order to get the portfolio weight vector w. In each time step the weights are rebalanced.
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The setup of the thesis is as follows. In chapter 2, the time series and volatility models are de-
scribed. In chapter 3 Modern Portfolio Theory and computations related to this is presented.
Further Tactical Asset allocation is also described in chapter 3. The modelling technique and out-
puts from R regarding the time series part are presented in chapter 4. Then the results are shown
in chapter 5. Finally the conclusions and further developments of the thesis are discussed in chapter
6.
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Chapter 2

Multivariate Time Series and Volatility
Models

In this chapter all theoretical concepts regarding the time series approach when modelling portfolio
weights are considered. First, let us start with more speci�c notations and basic concepts used in
this chapter. Let zt be an arbitrary k -dimensional time series, i.e a matrix of size k × l where l is
the length of the series.

• A k -dimensional time series zt is said to be weakly stationary if E[zt] = µµµ is constant a k -
dimensional vector, and Cov(zt) = E[(zt−µµµ)(zt−µµµ)′] = Σz is a constant k×k positive-de�nite
matrix.

• Γl is the lag l cross-covariance matrix for a stationary time series zt of length k, de�ned as

Γl = Cov(zt, zt−l) = E[(zt −µµµ)(zt−l −µµµ)′] (2.1)

• ρρρl is the lag-l cross-correlation matrix (CCM), we de�ne it as

ρρρl = D−1ΓΓΓlD
−1 (2.2)

where D = diag(σ1, ..., σk) i.e. the diagonal matrix of the standard deviations of the compo-
nents of zt.

• Given the sample {zt}Tt=1, the sample mean vector is de�ned as

µ̂µµz =
1

T

T∑
t=1

zt (2.3)

and the and lag 0 sample variance-covariance matrix as

Γ̂ΓΓ0 =
1

T − 1

T∑
t=1

(zt − µ̂µµz)(zt − µ̂µµz)′ (2.4)
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further the lag l sample cross-covariance matrix is de�ned as

Γ̂l =
1

T − 1

T∑
t=l+1

(zt − µ̂µµz)(zt−l − µ̂µµz)′ (2.5)

�nally the lag l sample CCM is

ρ̂ρρl = D̂−1Γ̂ΓΓlD̂
−1 (2.6)

where D̂ = diag(γ̂
1/2
0,11, ...γ̂

1/2
0,kk), in which γ̂0,ii is the (i,i)th element of Γ̂ΓΓ0.

• vec(A) is the vectorized form of a matrix A. As an example for the 2× 2 matrix

A =

[
a b
c d

]
the vectorized form is

vec(A) =


a
c
b
d


• Kronecker product ⊗ is de�ned as an operation on two matrices resulting in a block matrix.
If A is a m×n and B is a p×q, then the Kronecker product A⊗B is a mp×nq block matrix,
example

A⊗B =

[
a b
c d

]
⊗
[
e f
g h

]
=


a · e a · f b · e b · f
a · g a · h b · g b · h
c · e c · f d · e d · f
c · g c · h d · g d · h


• tr(A) is the trace of matrix A, that is the sum of the components on the main diagonal.

2.1 Multivariate Time Series Analysis

As �rst step in evaluating a multivariate time series model is to test if there is zero cross-correlation
in the data, i.e. testing the null hypothesis H0 : ρρρ1 = ... = ρρρm = 0 against the alternative hypothesis
Ha : ρρρi 6= 0 for some i, where 1 ≤ i ≤ m and where ρρρi is the lag-i cross-correlation matrix of rt. A
generalized multivariate Portmanteau test for zero cross correlation has been formed by Ljung-Box
with the following test statistic

Qk(m) = T 2
m∑
l=1

1

T − l
tr(Γ̂′lΓ̂

−1
0 Γ̂lΓ̂

−1
0 ) (2.7)
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where tr(A) is the trace of matrix A and T is the sample size. k is simple to denote the speci�c test
statistic. Rejecting H0 means that there is evidence for no autocorrelation. If the null hypothesis
cannot be rejected there is evidence for that a multivariate time series model has to be considered,
for instance the Vector autoregressive (VAR) model. In this thesis, we focus on the V AR(1) model
when computing expected returns of equity portfolios.

2.1.1 Vector AR(1) Model

A simple model for modelling asset returns rt is the Vector autoregressive model of order 1 i.e.
V AR(1), de�ned as (Tsay, 2010):

rt = φ0 + φ1rt−1 + at (2.8)

where φ0 is a k -dimensional vector of constants, φ1 is a time-invariant k × k matrix and at is a
sequence of serially uncorrelated random vectors with zero mean and covariance matrix Σa, which
is positive-de�nite.

2.1.1.1 Forecasting VAR(1)

For the V AR(1) model the one-step ahead forecast is quite trivial.

rt(1) = E[rt+1|Ft] = φ0 + φ1rt (2.9)

where Ft is the information known at time t.

2.2 Multivariate Volatility Models

Multivariate Volatility Models are of huge importance in �nancial application especially in portfolio
selection and asset allocation strategies. With a multivariate return series:

rt = µµµt + at (2.10)

where µµµt = E[rt|Ft−1] i.e. the expected return given the information known at time t− 1 and at is
the innovation of the series at time t. The conditional variance-covariance matrix of at is de�ned
as Σt = Cov[at|Ft−1] which can be modelled with di�erent techniques, a few of them mentioned
below.

2.2.1 Testing Conditional Heteroscedasticity

There are many di�erent tests for testing conditional heteroscedasticity, in this thesis two of these
are considered. In these tests at is the noise process. Since volatility is concerned with the second
moment at, the tests are considered to employ the a2

t process.
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2.2.1.1 Portmanteau Test 2

If there is no conditional hetroscedasticity in the noise process at, then Σt is time invariant. This
implies that a2

t does not depend on a2
t−1. So, the hypothesis which is tested within this framework is

H0 : ρρρ
(a)
1 = ρρρ

(a)
2 = ... = ρρρ

(a)
m = 0 against the alternative hypothesis Ha : ρρρ

(a)
i for some i(1 ≤ i ≤ m),

where ρ
(a)
i is the lag-i cross-correlation matrix of a2

t . The test statistic for this approach is the
Ljung-Box statistics de�ned as:

Q∗k(m) = T 2
m∑
i=1

1

T − i
b′i(ρ̂ρρ

(a)−1
0 ⊗ ρ̂ρρ(a)−10 )bi (2.11)

where T denotes the sample size, k is the dimension of at, and bi = vec(ρ̂′i). Note that this test
is similar to the Portmanteau Test for zero cross correlation, the only di�erence between these two
tests are that the input of cross-correlation matrices di�ers, therefore the star in Q∗k(m)

2.2.1.2 Rank-Based Test

Since asset returns often has heavy tails, extreme outcomes can e�ect the portmanteau statistics Q∗k.
This test is considered to be more robust than the Portmanteau test for conditional heteroscedas-
ticity. With this approach the standardized series

et = a′tΣ
−1at − k (2.12)

is considered, where Σ−1 is the inverse of the time-invariant variance-covariance matrix. Further,
let Rt be the rank of et. The lag-l rank autocorrelation of et can be de�nes as

ρ̃l =

∑T
t=l+1(rt − r̄)(rt−l − r̄)∑T

t=1(rt − r̄)2
(2.13)

for l = 1, 2, ..., where

r̄ =

T∑
t=1

rt/T = (T + 1)/2,

T∑
t=1

(rt − r̄)2 = T (T 2 − 1)/12.

Further it can be shown that

E(ρ̃l) = −(T − l)/[T (T − 1)]

V ar(ρ̃l) =
5T 4 − (5l + 9)T 3 + 9(l − 2)T 2 + 2l(5l + 8)T + 16l2

5(T − 1)2T 2(T + 1)

6



The test statistic for this model is

QR(m) =
m∑
i=1

[ρ̃i − E(ρ̃i)]
2

V ar(ρ̃i)
(2.14)

There the subscript R is just to denote this speci�c test. Note that this test is just considered as a
comparison to the Portmanteau test in this thesis and to illustrate that when taking the occurrence
of heavy tails in consideration the rejection rate becomes slightly larger.

2.2.2 BEKK Model

One basic but useful Multivariate Volatility Model for �nancial applications is the Baba-Engle-
Kraft-Kroner (BEKK) model:

Σ̂t = AA′ +
m∑
i=1

Ai(ât−iâ
′
t−i)A

′
i +

s∑
j=1

BjΣ̂t−jB
′
j (2.15)

where A is a lower triangular matrix, Ai and Bj are k×k matrices and Σt is almost surely positive
de�nite. Even though the BEKK model is a nice and user-friendly approach it has its drawbacks.
As an example, it contains of too many parameters, for instance if k = 3 the model is consisting of
24 parameters. For k > 3 the BEKK(1,1) model is hard to estimate.

2.2.3 Exponentially Weighted Moving Average (EWMA)

A common volatility model in �nancial applications is the EWMA method. This model provides
positive-de�nite volatility matrices. Let ât be the residuals of the mean equation. The EWMA
model for volatility is

Σ̂t = λΣ̂t−1 + (1− λ)ât−1â
′
t−1 (2.16)

where 0 < λ < 1 is the decaying rate. The parameter λ can be estimated by QMLE or be �xed.
In many �nancial applications the estimate of λ̂ ≈ 0.96 which is default value in the EMWAvol

function in the MTS package in R. In this thesis λ = 0.96 is used.
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Chapter 3

Modern Portfolio Theory (MPT)
combined with Tactical Asset Allocation

In 1952 Harry Markowitz introduced portfolio theory in a Journal of Finance article. A few years
later James Tobin (Yale) and William Sharpe (Stanford) made important extensions to Markowitz
model and hence won the Nobel Price for their work in 1990.

3.1 Data Input requirements to a MPT model

The following estimates for every security has to be considered in a MPT model:
1. The expected returns E[Ri]
2. The variance of returns σ2i
3. The covariance between all securities ρσiσj for i 6= j

As discussed in (MPT 2012, introduction) expected returns in a mean-variance framework can
be estimated by a one-period forecast. The idea in this thesis is to use time-varying estimates in the
model. The estimates of the expected returns are computed by a one-period forecast of a V AR(1)
model and the variance-covariance matrix is estimated by a EWMA model. The reason for this is
that �nancial data are most often non-stationary and there is hetroscedaticity in the residuals.

3.2 Portfolio weights

In a MPT framework the proportion of each security has to be considered, these proportions or
weights denoted by wi are the fractions of the total value of the portfolio that should be invested
in security i. The following constraint has to hold for all portfolios:

n∑
i=1

wi = 1 (3.1)

A feasible set of portfolios weights can be computed by Monte-Carlo simulation and the optimal

8



weights in a MPT problem can be computed by an optimization algorithm. Hence the portfolio
expected return is:

E[Rp] = E[

n∑
i=1

wiRi] =

n∑
i=1

wiE[Ri] (3.2)

and the time invariant variance-covariance matrix of the portfolio is:

Σp = wTΣw (3.3)

where p denoted the portfolio, w is the vector of portfolio returns.

3.3 Diversi�cation

In portfolio analysis Markowitz diversi�cation plays a signi�cant role (MPT p.38). The idea is to
reduce risk (volatility) without sacri�cing any of the portfolio return. Markowitz explains his theory
in the following way:

"Not only does (portfolio analysis) imply diversi�cation, it implies the "right kind" of diversi�-

cation for the "right reason". The adequacy of diversi�cation is not thought by investors to depend

on the number of di�erent securities held. A portfolio with sixty di�erent railway securities, for

example, would not be as well diversi�ed as the same size portfolio with some railroad, some public

utility, various sorts of manufacturing etc. The reason is that it is more likely for �rms within the

same industry to do poorly at the same time than for �rms in dissimilar industries. Similarly, in

trying to make variance (of returns) small it is enough to invest in many securities. It is necessary

to avoid to invest in securities with high covariances (or correlations) among themselves."

The conclusion of this framework is that a portfolio manager has to pick assets carefully to be
able to reduce the risk. To not "put all eggs in the same basket" is of importance.

3.4 Sharpe's Ratio

A linear risk-return modelling technique has been formed by William Sharpe. This portfolio per-
formance model has won the Nobel Prize too. the model Sp consists of the excess return R̄p − Rf

and the volatility of the portfolio:

Sp =
R̄p −Rf

σp
(3.4)

where R̄p is the mean return of the portfolio, Rf is the risk-free rate and σp is the volatility of
the portfolio. In this thesis, the risk-free rate is set to zero, which is not a bad assumption when
the interest rates are extremely low and in some cases even negative. So the interpretation of this
model is to measure the excess return per unit of risk. In forward looking portfolio analysis the

mean return R̄p and the historical volatility σp can be substituted by E[Rp] and σ̂p =
√

wTΣ̂w.
This extension of the model is considered in this thesis.
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3.5 Mean-Variance Portfolio

An individual has Constant Relative Risk Aversion (CRRA) utility if the relative risk aversion is
the same at all wealth levels. Under some simpli�ed assumptions i.e. that asset returns follows a
multivariate normal distribution and that the investor has CRRA the expected utility of wealth is
expressed as (Lee 2000):

E[U(W )] = −exp
(
− γ(E[Rp]−

γ

2
σ2p)
)

(3.5)

where γ is the CRRA coe�cient, E[Rp] and σ
2
p are the expected return and variance of the portfolio,

given by

E[Rp] = wTE[R] (3.6)

and

σ2p = wTΣw (3.7)

where w is the vector of portfolio weights.

Maximizing the expected utility in equation (3.5) is equivalent to solve:

max
w

wTE[R]− γ

2
wTΣw (3.8)

s.t wT1 = 1 (3.9)

Then, the Lagrangian of the problem is

L = wTE[R]− γ

2
wTΣw − λ(wT1− 1) (3.10)

Then, the �rst-order conditions are as follows, �rst for w

∂L

∂w
= E[R]− γΣw − λ1 = 0 (3.11)

⇒

w∗ =
Σ−1

γ
(E[R]− λ1) (3.12)

then, for λ

∂L

∂λ
= −(wT1− 1) = 0 (3.13)

⇒

wT1 = 1 (3.14)

10



Substituting equation (3.11) into (3.14) yields for λ

λ =
1TΣ

−1
E[R]

1TΣ
−1

1
− γ

1TΣ
−1

1
(3.15)

Finally the optimal portfolio weights are solved by substituting (3.15) into (3.11) as

w∗ =

(
1− 1TΣ

−1
E[R]

γ

)
Σ−11

1TΣ
−1

1
+

(
1TΣ

−1
E[R]

γ

)
Σ−1E[R]

1TΣ
−1
E[R]

(3.16)

Equation (3.16) is the well known Mutual Fund Separation Problem, which is the optimal portfolio
under the mean-variance framework. Note that within this framework, short sales are allowed, i.e.
that portfolio weights can be negative.

3.6 Tactical Asset Allocation

The de�nition of TAA made by Philips, Rogers and Capali (1996) is:

"A TAA manager's investment objective is to obtain better-than-benchmark returns with (possi-

bly) lower-than-benchmark volatility by forecasting the returns of two or more asset classes, and

varying asset class exposure accordingly, in a systematic manner"

3.6.1 Performance Measures

In practical purposes the TAA portfolio is measured against a passive benchmark portfolio and if
the return of the TAA portfolio is higher than the benchmark the manager is said to delivered a
positive "alpha", which is de�ned as

αt = RTAA,t −Rt (3.17)

where RTAAt is the return of the TAA model and Rt is the return of the benchmark portfolio. The
number of out-performances are also measured to deliver more consistent results, measured by the
volatility of alpha and known as the "tracking error" that is:

TEt =

√√√√ 1

T − 1

T∑
t=1

(
αt −

1

T

T∑
t=1

αt

)2

(3.18)

The performance of TAA managers are measured by the information ratio, de�ned as the ratio
between alpha and the tracking error. The higher the information error the better (Lee 2000).
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3.6.2 Tactical Asset Allocation based on macroeconomic factors

In Flavins and Wickens (2001) it is shown that macroeconomic information can be used to improve
asset allocation. In their setup they use a VAR-model with a M-GARCH structure to compute the
joint distribution of �nancial asset returns with macroeconomic variables. In their paper they are
using three risky UK assets and in�ation as a macroeconomic factor. Their main subject of study is
to investigate how macroeconomic volatility can help to predict the volatility of asset returns, then
this can be used to improve tactical asset allocation.

The authors conclusion of the paper is that compared to their analysis in 1998 where a tactical
asset allocation strategy that continuously re-balanced the portfolio weights with a time-varying
variance-covariance matrix, the model with a macroeconomic factor gave further signi�cant gains
in risk reduction. Their model in 1998 was compared to a traditional MPT model with constant
variance-covariance matrix.
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Chapter 4

Modelling procedure of the portfolios

This section covers the modelling part of the project. First in section 4.1 with a basic example to
illustrate the backtesting technique. Futher on the full model will interpreted. The main target is
to investigate whether macroeconomic factors, i.e. In�ation (CPI) and Purchaser Managers Index
(PMI) will give positive impact on the portfolio dynamics. The idea is to pick a bunch of di�erent
portfolios consisting of �ve risky assets. Portfolio manager A builds his model under a mean-variance
framework, i.e uses the time invariant estimates of µµµ and Σ. Portfolio manager B uses the time
varying estimates, i.e estimates µµµ with a VAR(1) model and the Σt with a EWMA model. Portfolio
manager C uses the same approach as B but also include the macroeconomic factors in the model.
Then all three strategies are compared with a benchmark portfolio, with the same assets but with
equal weights, i.e 0.2 in each asset. Note that all strategies are so called self-�nancing portfolios i.e
no additional amount of cash is injected or withdrawn from the portfolio beside the invested capital
at t = 0. In the model short-sales also are allowed. A reasonable number for the CRRA-coe�cient
for modelling purposes is 10, which is shown in the result part.

4.1 Basic model with two risky assets

In a basic setup of the model we set up a global minimum-variance portfolio consisting of two risky
assets e.g. two Swedish stocks, Holmen A and Alfa Laval A.
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Figure 4.1: The stock prices of Holmen A and Alfa Laval A, from January 2010 to April 2015

The Variance-Covariance matrix is modelled by a BEKK(1,1) Multivariate GARCH model and
the portfolio weights are balanced in each time step according to the estimates of this model. The
portfolio weights in the global minimum-variance portfolio are:

w1 =
σ22 − ρσ1σ2

σ21 + σ22 − 2ρσ1σ2
(4.1)

w2 =
σ21 − ρσ1σ2

σ21 + σ22 − 2ρσ1σ2
= 1− w1 (4.2)

where σ21 is the variance of the Holmen A stock, σ22 is the variance of the Alfa Laval A stock and
ρσ1σ2 is the covariance between the two assets. Note that w1 + w2 = 1. The idea is to use a
back testing model with a moving estimation window where each estimation window is of length
54 months. The �rst estimation window is from January 2010 to August 2014, the second is from
February 2010 to September 2014 etc. The entire data sample is 63 months from January 2010 to
April 2015. The total global minimum-variance/BEKK portfolio return from August 2014 to April
2015 is then computed by:

DP = V0

9∏
i=1

(w
(i−1)
1 R

(i)
1 + w

(i−1)
2 R

(i)
2 ) (4.3)

where V0 is the invested amount of capital at t = 0 and R
(i)
j , j = 1, 2 are the simple returns of

Holmen A and Alfa Laval respectively. Finally the goal is to compare this dynamic rebalancing
strategy with a passive 50/50 strategy i.e. the portfolio weights are equally weighted and constant.
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The passive portfolio is

PP = V0

9∏
i=1

(0.5R
(i)
1 + 0.5R

(i)
2 ) (4.4)

with the same returns as in the DP .

4.2 Full model with �ve risky assets

Five di�erent diversi�ed portfolios are formed and modelled with the same technique as described
above, then the α, tracking errors and Sharpe ratios are computed to check the robustness and risk
adjusted returns of the models. In all portfolios there are 5 di�erent Swedish stocks. All inputs
i.e. the �ve di�erent stocks and PMI are in log returns while CPI is already a return series. The
procedure of modelling for portfolio managers B and C in each time step are as follows:

• Testing Cross-Correlation in the multivariate time series

• Build a VAR(1)-model

• Testing Conditional Hetroscedasticity

• Estimate µµµ by 1-step-ahead forecast of the VAR(1)-model

• Estimate Σt with the EWMA-model

• Model checking, i.e. check for adequacy by test statistics of the residuals in the volatility
model.

• Compute portfolio weights by the Mutual Fund Separation Theorem at time t and multiply
with the returns in t+1 and compute the total return of the portfolio strategy.

Note that for the model with macroeconomic factors i.e. the approach of portfolio manager C µµµ is
a 7 × 1 vector and Σt is a 7 × 7 matrix. Then a subvector of dimension 5 × 1 and a submatrix of
dimension 5× 5 is picked for computing portfolio weights. So, the information from the macroeco-
nomic environment e�ects the portfolio dynamics, i.e. both mean and volatility, but is not included
in the portfolio.

Note that we use Qk(m) and Q∗k(m) i.e. test statistics as main target within this framework
because of the assumption of normally distributed returns in the MPT model. The Rank Based
test is there for comparison. The returns of each portfolio is computed in the same way as in eq.
(5.3) and the passive returns are calculated as in eq. (5.4) with the only di�erence that in the full
model log returns are considered instead of simple returns.
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4.2.1 Portfolio 1

The �rst portfolio is formed by the following assets:

• Alfa Laval

Alfa Laval, Price

Year

V
al

ue
 o

f S
to

ck
, S

E
K

2004 2008 2012

50
15

0

Alfa Laval, Histogram

Log−returns

F
re

qu
en

cy

−0.2 −0.1 0.0 0.1 0.2

0
6

12

−2 −1 0 1 2

−
0.

2
0.

2

 Alfa Laval, Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s Alfa Laval, Volatility Clustering

Time

ab
s(

al
fa

)

2004 2008 2012

0.
00

0.
20

Figure 4.2: The stock price, Histogram, QQ-plot and Volatility Clustering of Alfa Laval, from
January 2004 to May 2015

• Autoliv
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Figure 4.3: The stock price, Histogram, QQ-plot and Volatility Clustering of Autoliv, from January
2004 to May 2015
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• Elekta B
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Figure 4.4: The stock price, Histogram, QQ-plot and Volatility Clustering of Elekta B, from January
2004 to May 2015

• Hennes & Mauritz B
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Figure 4.5: The stock price, Histogram, QQ-plot and Volatility Clustering of H&M, from January
2004 to May 2015

17



• Industrivarden C
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Figure 4.6: The stock price, Histogram, QQ-plot and Volatility Clustering of Industrivarden C, from
January 2004 to May 2015

4.2.1.1 Portfolio Manager A

The setup for this approach is to compute the mean and time-invariant covariance matrix in each
time step. Then the portfolio weights are computed, see results in next chapter.

4.2.1.2 Portfolio Manager B

The �rst step in the modelling technique is the perform the Portmanteau test for zeros cross cor-
relation. The test is obtained from the mq function found in the MTS package in R. Note that
all other functions used in this chapter are also found in the MTS package. The next step is to
�nd evidence for conditional heteroscedasticity in the residuals of the VAR(1) model, by using the
function MarchTest.

Listing 4.1: R output, testing zero cross-correlation

> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1 170 49 0

[2,] 2 334 98 0

[3,] 3 469 147 0

[4,] 4 587 196 0

[5,] 5 716 245 0

[6,] 6 818 294 0

[7,] 7 896 343 0

[8,] 8 948 392 0

[9,] 9 1012 441 0

[10,] 10 1075 490 0
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It is obvious that the null hypothesis of zero cross-correlation is rejected, i.e a VAR(1)-model is
formed.
Finally the EWMA model is formed by using the function EWMAvol and the adequacy of the model
is tested with the function MCHdiag.

Listing 4.2: R output, testing Conditional Heteroscedasticity

> at1=m1$residuals

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 103.8102 p-value: 0

Rank -based Test:

Test statistic: 34.85775 p-value: 0.0001320395

Q_k(m) of squared series:

Test statistic: 525.9823 p-value: 0

Robust Test (5%) : 336.3953 p-value: 0.0002155404

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected, i.e. a Multivariate
EMWA volatility model is considered. Note that Q_k(m) denotes the Portmanteau test for zero
cross-correlation and the Rank-based test is self-explanatory. The other two test statistics are not
considered here.

Listing 4.3: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 71.87529 1.923628e-11

Rank -based test:

Test and p-value: 20.4799 0.02502678

Qk(m) of epsilon_t:

Test and p-value: 457.8394 2.176037e-14

Robust Qk(m):

Test and p-value: 327.4891 0.0007115821

We also �nd evidence for that the volatility model is adequate both under the Portmanteau test
and the Rank Based Test. Here, Qk(m) is the Portmanteau test for conditional heteroscedasticity.

4.2.1.3 Portfolio Manager C

Listing 4.4: R output, testing zero cross-correlation

> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1 170 49 0

[2,] 2 334 98 0

[3,] 3 469 147 0

[4,] 4 587 196 0

[5,] 5 716 245 0

[6,] 6 818 294 0

[7,] 7 896 343 0

[8,] 8 948 392 0

[9,] 9 1012 441 0
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[10,] 10 1075 490 0

It is obvious that the null hypothesis of zero cross-correlation is rejected, i.e a VAR(1)-model is
formed.

Listing 4.5: R output, testing Conditional Heteroscedasticity

> at1=scale(rtn[1:127,], center=T,scale=F)

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 246.0123 p-value: 0

Rank -based Test:

Test statistic: 98.97975 p-value: 1.110223e-16

Q_k(m) of squared series:

Test statistic: 1343.991 p-value: 0

Robust Test (5%) : 915.8655 p-value: 0

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected, i.e. a Multivariate
EMWA volatility model is considered.

Listing 4.6: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 201.8445 0

Rank -based test:

Test and p-value: 93.95286 8.881784e-16

Qk(m) of epsilon_t:

Test and p-value: 1040.678 0

Robust Qk(m):

Test and p-value: 755.5982 1.182388e-13

We also �nd evidence for that the volatility model is adequate.

4.2.2 Portfolio 2

The second portfolio is formed by the following assets:

• ABB

• Astra Zeneca

• Investor B

• Lundin Petroleum

• Nordea

All relevant plots are found in appendix.
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4.2.2.1 Portfolio Manager B

Listing 4.7: R output, testing zero cross-correlation
> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1.0 28.6 25.0 0.28

[2,] 2.0 44.2 50.0 0.71

[3,] 3.0 72.2 75.0 0.57

[4,] 4.0 95.9 100.0 0.60

[5,] 5.0 134.2 125.0 0.27

[6,] 6.0 162.4 150.0 0.23

[7,] 7.0 177.7 175.0 0.43

[8,] 8.0 202.7 200.0 0.43

[9,] 9.0 238.8 225.0 0.25

[10,] 10.0 267.0 250.0 0.22

Since the hypotheis of zero-cross correlation can not be rejected in this case, a time series model is
not considered. Hence, Portfolio Manager A and B uses the same approach for portfolio 2.

4.2.2.2 Portfolio Manager C

Listing 4.8: R output, testing zero cross-correlation
> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1 164 49 0

[2,] 2 307 98 0

[3,] 3 452 147 0

[4,] 4 565 196 0

[5,] 5 682 245 0

[6,] 6 768 294 0

[7,] 7 835 343 0

[8,] 8 902 392 0

[9,] 9 968 441 0

[10,] 10 1034 490 0

It is obvious that the null hypothesis of zero cross-correlation is rejected, i.e a VAR(1)-model is
formed.

Listing 4.9: R output, testing Conditional Heteroscedasticity
> at1=m1$residuals

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 76.48064 p-value: 2.448486e-12

Rank -based Test:

Test statistic: 33.0848 p-value: 0.0002635897

Q_k(m) of squared series:

Test statistic: 960.6741 p-value: 0

Robust Test (5%) : 653.6542 p-value: 9.735502e-07

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected, i.e. a Multivariate
EMWA volatility model is considered.
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Listing 4.10: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 50.12866 2.527533e-07

Rank -based test:

Test and p-value: 24.90879 0.005521107

Qk(m) of epsilon_t:

Test and p-value: 716.0721 1.014047e-10

Robust Qk(m):

Test and p-value: 563.6266 0.01177117

We also �nd evidence for that the volatility model is adequate.

4.2.3 Portfolio 3

The third portfolio is formed by the following assets:

• Assa Abloy B

• Elektrolux B

• Kinnevik B

• SEB C

• Tele 2 B

All relevant plots are found in appendix.

4.2.3.1 Portfolio Manager B

Listing 4.11: R output, testing zero cross-correlation

> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1.0 48.0 25.0 0.00

[2,] 2.0 67.7 50.0 0.05

[3,] 3.0 103.8 75.0 0.02

[4,] 4.0 133.7 100.0 0.01

[5,] 5.0 159.6 125.0 0.02

[6,] 6.0 188.6 150.0 0.02

[7,] 7.0 224.9 175.0 0.01

[8,] 8.0 256.5 200.0 0.00

[9,] 9.0 281.2 225.0 0.01

[10,] 10.0 326.2 250.0 0.00

Here the null hypothesis of zero cross-correlation is rejected, i.e a VAR(1)-model is formed.
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Listing 4.12: R output, testing Conditional Heteroscedasticity

> at1=m1$residuals

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 29.13984 p-value: 0.00118271

Rank -based Test:

Test statistic: 21.30273 p-value: 0.01907876

Q_k(m) of squared series:

Test statistic: 387.6748 p-value: 5.188785e-08

Robust Test (5%) : 356.3169 p-value: 1.121463e-05

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected, i.e. a Multivariate
EMWA volatility model is considered.

Listing 4.13: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 22.64045 0.01215441

Rank -based test:

Test and p-value: 28.01945 0.00179235

Qk(m) of epsilon_t:

Test and p-value: 294.2669 0.02852071

Robust Qk(m):

Test and p-value: 341.6782 0.0001021771

We also �nd evidence for that the volatility model is adequate.

4.2.3.2 Portfolio Manager C

Listing 4.14: R output, testing zero cross-correlation

> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1 186 49 0

[2,] 2 335 98 0

[3,] 3 485 147 0

[4,] 4 614 196 0

[5,] 5 717 245 0

[6,] 6 813 294 0

[7,] 7 898 343 0

[8,] 8 976 392 0

[9,] 9 1043 441 0

[10,] 10 1123 490 0

It is obvious that the null hypothesis of zero cross-correlation is rejected, i.e a VAR(1)-model is
formed.
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Listing 4.15: R output, testing Conditional Heteroscedasticity

> at1=m1$residuals

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 67.71659 p-value: 1.221143e-10

Rank -based Test:

Test statistic: 32.96659 p-value: 0.0002759291

Q_k(m) of squared series:

Test statistic: 754.3744 p-value: 1.471046e-13

Robust Test (5%) : 581.2579 p-value: 0.002780797

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected, i.e. a Multivariate
EMWA volatility model is considered.

Listing 4.16: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 57.90781 8.997223e-09

Rank -based test:

Test and p-value: 36.47819 6.964344e-05

Qk(m) of epsilon_t:

Test and p-value: 683.1129 1.638541e-08

Robust Qk(m):

Test and p-value: 647.2248 2.232855e-06

We also �nd evidence for that the volatility model is adequate.

4.2.4 Portfolio 4

The fourth portfolio is formed by the following assets:

• Atlas Copco B

• Skanska B

• Swedbank A

• Telia Sonera

• Modern Times Group B (MTG)

All relevant plots are found in appendix.
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4.2.4.1 Portfolio Manager B

Listing 4.17: R output, testing zero cross-correlation

> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1.0 41.0 25.0 0.02

[2,] 2.0 85.7 50.0 0.00

[3,] 3.0 119.4 75.0 0.00

[4,] 4.0 183.1 100.0 0.00

[5,] 5.0 210.6 125.0 0.00

[6,] 6.0 251.6 150.0 0.00

[7,] 7.0 290.9 175.0 0.00

[8,] 8.0 315.7 200.0 0.00

[9,] 9.0 337.3 225.0 0.00

[10,] 10.0 370.1 250.0 0.00

It is obvious that the null hypothesis of zero cross-correlation is rejected, i.e a VAR(1)-model is
formed.

Listing 4.18: R output, testing Conditional Heteroscedasticity

> at1=m1$residuals

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 54.61833 p-value: 3.721121e-08

Rank -based Test:

Test statistic: 38.78617 p-value: 2.767312e-05

Q_k(m) of squared series:

Test statistic: 553.679 p-value: 0

Robust Test (5%) : 414.9823 p-value: 2.546421e-10

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected, i.e. a Multivariate
EMWA volatility model is considered.

Listing 4.19: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 6.087996 0.8078168

Rank -based test:

Test and p-value: 20.33978 0.02619788

Qk(m) of epsilon_t:

Test and p-value: 311.4454 0.004944768

Robust Qk(m):

Test and p-value: 311.3056 0.005022721

We also �nd evidence for that the volatility model is adequate.
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4.2.4.2 Portfolio Manager C

Listing 4.20: R output, testing zero cross-correlation

> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1 176 49 0

[2,] 2 350 98 0

[3,] 3 501 147 0

[4,] 4 651 196 0

[5,] 5 766 245 0

[6,] 6 877 294 0

[7,] 7 976 343 0

[8,] 8 1046 392 0

[9,] 9 1100 441 0

[10,] 10 1160 490 0

It is obvious that the null hypothesis of zero cross-correlation is rejected, i.e a VAR-model is formed.

Listing 4.21: R output, testing Conditional Heteroscedasticity

> at1=m1$residuals

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 10.0609 p-value: 0.4351663

Rank -based Test:

Test statistic: 11.41437 p-value: 0.3261583

Q_k(m) of squared series:

Test statistic: 615.6382 p-value: 9.390825e-05

Robust Test (5%) : 489.5691 p-value: 0.4969953

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected for the Portmanteau

Test, i.e. a Multivariate EMWA volatility model is considered. Note that the Rank-Based test fails
to reject the null hypothesis in this case.

Listing 4.22: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 11.20502 0.3417701

Rank -based test:

Test and p-value: 14.48115 0.1521541

Qk(m) of epsilon_t:

Test and p-value: 579.1562 0.003338438

Robust Qk(m):

Test and p-value: 542.8098 0.04936901

We also �nd evidence for that the volatility model is adequate for the Portmanteau Test while it is
not for the Rank Based Test.
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4.2.5 Portfolio 5

The �fth portfolio is formed by the following assets:

• Sandvik

• SKF B

• SCA B

• Handelsbanken B

• Volvo B

All relevant plots are found in appendix.

4.2.5.1 Portfolio Manager B

Listing 4.23: R output, testing zero cross-correlation

> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1.0 38.1 25.0 0.05

[2,] 2.0 79.0 50.0 0.01

[3,] 3.0 122.5 75.0 0.00

[4,] 4.0 159.2 100.0 0.00

[5,] 5.0 188.6 125.0 0.00

[6,] 6.0 227.6 150.0 0.00

[7,] 7.0 278.5 175.0 0.00

[8,] 8.0 325.3 200.0 0.00

[9,] 9.0 364.0 225.0 0.00

[10,] 10.0 407.3 250.0 0.00

It is obvious that the null hypothesis of zero cross-correlation is clearly rejected, i.e a VAR(1)-model
is formed.

Listing 4.24: R output, testing Conditional Heteroscedasticity

> at1=m1$residuals

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 42.76007 p-value: 5.489007e-06

Rank -based Test:

Test statistic: 50.21036 p-value: 2.441541e-07

Q_k(m) of squared series:

Test statistic: 781.5635 p-value: 0

Robust Test (5%) : 339.8707 p-value: 0.0001323179

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected, i.e. a Multivariate
EMWA volatility model is considered.
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Listing 4.25: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 30.0822 0.0008305176

Rank -based test:

Test and p-value: 27.91302 0.001864042

Qk(m) of epsilon_t:

Test and p-value: 662.4454 0

Robust Qk(m):

Test and p-value: 269.4625 0.1898617

We also �nd evidence for that the volatility model is adequate.

4.2.5.2 Portfolio Manager C

Listing 4.26: R output, testing zero cross-correlation

> mq(rtn [1:127,],lag =10)

Ljung -Box Statistics:

m Q(m) df p-value

[1,] 1 169 49 0

[2,] 2 335 98 0

[3,] 3 493 147 0

[4,] 4 619 196 0

[5,] 5 724 245 0

[6,] 6 827 294 0

[7,] 7 933 343 0

[8,] 8 1022 392 0

[9,] 9 1100 441 0

[10,] 10 1182 490 0

It is obvious that the null hypothesis of zero cross-correlation is rejected, i.e a VAR(1)-model is
formed.

Listing 4.27: R output, testing Conditional Heteroscedasticity

> at1=m1$residuals

> MarchTest(at1)

Q(m) of squared series(LM test):

Test statistic: 82.96707 p-value: 1.312284e-13

Rank -based Test:

Test statistic: 75.95574 p-value: 3.099188e-12

Q_k(m) of squared series:

Test statistic: 1190.6 p-value: 0

Robust Test (5%) : 590.399 p-value: 0.001214725

Here the null hypothesis of Zero Conditional Heteroscedasticity is rejected, i.e. a Multivariate
EMWA volatility model is considered.
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Listing 4.28: R output, Model checking, Volatility model

> m21=EWMAvol(at1 ,lambda =0.96)

> Sigma.t1=m21$Sigma.t

> m31=MCHdiag(at1 ,Sigma.t1)

Test results:

Q(m) of et:

Test and p-value: 59.56521 4.379784e-09

Rank -based test:

Test and p-value: 61.54479 1.846686e-09

Qk(m) of epsilon_t:

Test and p-value: 1236.399 0

Robust Qk(m):

Test and p-value: 631.956 1.462015e-05

We also �nd evidence for that the volatility model is adequate.
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Chapter 5

Results

5.1 Basic model with two risky assets

Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Weights Holmen 0.591 0.668 0.562 0.803 0.646 0.496 0.639 0.797 0.899

Returns Holmen 0.934 0.996 0.993 1.109 1.073 1.077 1.012 1.004 0.992

Weights Alfa Laval 0.409 0.332 0.438 0.197 0.354 0.504 0.369 0.203 0.101

Returns Alfa Laval 0.963 0.973 0.970 1.027 0.952 0.995 1.103 1.031 1.005

Table 5.1: The weights of the Global Minimum-Variance Portfolio modelled with a BEKK(1,1)
Volatility Model

With these weights and returns the total return of the Global Minimum-Variance Portfolio is

GVMP = 1.123

and the passive 50/50 portfolio gives the total return

PP = 1.103

These returns gives an alpha

αt = 1.123− 1.103 = 0.02

i.e, the strategy is successful in this case.

30



The volatility equation of the �tted BEKK(1,1) model in April 2015

[
σ11,t σ12,t
σ21,t σ22,t

]
=

[
0.032 0
0.007 0.009

] [
0.032 0.007

0 0.009

]
+[

0.037 0.500
−0.500 0.536

] [
a21,t−1 a1,t−1a2,t−1

a2,t−1a1,t−1 a22,t−1

] [
0.037 −0.500
0.500 0.536

]
+[

0.234 0.058
−0.376 0.852

] [
σ11,t−1 σ12,t−1

σ21, t− 1a1,t−1 σ22, t− 1

] [
0.234 −0.376
0.058 0.852

]

5.2 Full model with �ve risky assets

5.2.1 Portfolio 1

Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Weights A Alfa 0.275 0.285 0.313 0.304 0.249 0.242 0.239 0.233 0.299

Weights B Alfa 0.792 0.296 0.816 0.213 0.645 -0.123 -0.006 0.388 -0.315

Weights C Alfa 0.563 0.208 0.717 0.073 0.607 -0.278 -0.181 0.281 -0.483

Returns Alfa 1.027 0.956 0.987 0.964 1.014 1.047 1.057 1.021 0.950

Weights A Autoliv 0.022 0.025 0.002 0.012 0.011 0.041 0.043 0.042 0.073

Weights B Autoliv -0.682 0.113 0.184 -0.077 -0.148 -0.365 0.404 0.842 -0.482

Weights C Autoliv 0.054 0.453 0.776 0.300 -0.031 -0.003 0.795 1.068 -0.032

Returns Autoliv 1.059 0.921 1.014 1.078 1.127 1.070 1.055 1.080 0.979

Weights A Elekta 0.368 0.353 0.354 0.363 0.363 0.345 0.346 0.336 0.313

Weights B Elekta 0.264 0.523 0.370 0.433 0.417 0.474 0.517 0.598 0.642

Weights C Elekta -0.139 0.209 -0.045 0.138 0.245 0.232 0.271 0.412 0.264

Returns Elekta 0.916 0.905 1.068 1.045 1.010 1.105 0.989 0.867 1.026

Weights A H& M 0.509 0.524 0.517 0.501 0.541 0.542 0.537 0.545 0.506

Weights B H& M 0.944 0.388 0.923 0.490 0.176 0.341 -0.013 -0.002 0.964

Weights C H& M 0.984 -0.004 0.655 0.268 -0.130 0.305 0.093 -0.124 0.602

Returns H& M 1.067 0.984 0.987 1.094 1.024 1.029 1.082 0.944 0.980

Weights A Industri -0.174 -0.187 -0.186 -0.180 -0.164 -0.170 -0.165 -0.156 -0.192

Weights B Industri -0.319 -0.321 -1.292 -0.059 -0.090 0.674 0.099 -0.825 0.191

Weights C Industri -0.462 0.133 -1.103 0.221 0.309 0.745 0.023 -0.636 0.649

Returns Industri 0.999 0.980 1.036 1.025 1.035 1.081 1.072 1.017 1.073

Table 5.2: The weights of the strategies for Portfolio managers A, B and C and the returns in each
time step
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The passive 50/50 portfolio gives the total return

PP = 1.176

With these weights and returns the total return of the Mutual Fund Portfolio 1 for Manager A is

P 1
A = 1.017

These returns gives an alpha

α1
A = 1.017− 1.176 = −0.159

For Manager B

P 1
B = 1.072

These returns gives an alpha

α1
B = 1.072− 1.176 = −0.104

i.e, the strategy is successful in this case. And for portfolio manager C:

P 1
C = 1.314V0

These returns gives an alpha

α1
C = 1.314− 1.176 = 0.114

i.e, the strategy is successful in this case.

In the same kind of way, alphas for portfolio 2-5 are computed.

Manager A B C

P 2
i 1.215 1.215 1.120

PP 2
i 1.194 1.194 1.194

α2
i 0.021 0.021 -0.074

P 3
i 1.376 1.472 1.434

PP 3
i 1.273 1.273 1.273

α3
i 0.103 0.198 0.160

P 4
i 1.149 1.135 1.206

PP 4
i 1.136 1.136 1.136

α4
i 0.013 -0.001 0.070

P 5
i 1.214 1.539 1.443

PP 5
i 1.245 1.245 1.245

α5
i -0.032 0.294 0.197

Table 5.3: The alphas for each portfolio and manager, for i = A,B,C
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Tables for weights and returns for portfolio 2-5 are found in Appendix.

The estimate of αi is computed by

α̂i =
1

N

N∑
j=1

αi (5.1)

where N = 5 i.e. the number of portfolios and the tracking error is computed by equation (3.18).

Manager A B C

α̂i -0.011 0.082 0.093

TEi 1.041e-17 1.388e-17 6.939e-18

Table 5.4: The mean of alphas and Tracking error for each portfolio and manager, for i = A,B,C

The estimates of Sharpe ratios are computed by

ŜRi =
√

9
1

T

T∑
i=1

SRi (5.2)

where T = 9, i.e. number of rebalancing time periods and the factor
√

9 comes from when trans-
forming monthly Sharpe ratios into three quarters of a year.

Manager A B C

ŜR1 0.630 0.840 1.468

ŜR2 0.530 0.530 0.814

ŜR3 0.331 0.494 1.396

ŜR4 0.352 0.343 1.331

ŜR5 0.251 0.420 1.275

Table 5.5: The mean Sharpe ratios for each portfolio and manager
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Then for justi�cation of the choice of CRRA parameter γ di�erent outcomes of α is plotted
against γ.
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Figure 5.1: The outcome of alpha for portfolio 1-4 and manager A for γ = 1 : 100

Here we see that the results start to converge approximately around a γ ≈ 10, for lower γ the
risk or uncertainty of the outcome is higher. Note that this is a user input and not a statistical
estimate, this is just a measure of the investors risk.
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Chapter 6

Conclusions

As a �rst conclusion one can notice that the portfolio weights do not vary much over time for
Portfolio manager A while they di�ers much between each time step for manager B and C. It seems
at �rst glance that the dynamic procedure is more useful for manager B and C than for manager
A, i.e. the models capture the time-varying dynamics better than manager A which seems to have
only a little bit or non of time-variation in the weighting procedure. This can be explained by for
instance by observing Table (5.2), Weights A does not vary much over time compared to Weights
B and C.

It is shown that the time-varying time series approach outperforms the traditional modelling tech-
nique. The impact of the macroeconomic factors seems to boost up the alphas compared to the
portfolio model with only stocks. The tracking error is also signi�cantly reduced when including
PMI and CPI in the model. So the Sharpe ratios i.e. the risk adjusted returns are signi�cantly
higher for the modelling setup with macroeconomic factors compared to the two other techniques.
We see that information about the macroeconomic environment is clearly a re�nement of the mod-
elling of portfolio weights in MPT. The main conclusion is therefore stated in Table (6.5), i.e. all
semi-annual Sharpe ratios are above 1 (except for portfolio 2), all Sharpe ratios are highest for
portfolio manager C comparing to the other techniques. It seems that this suggested strategy is
very successful from a risk-return perspective.

These results re�ects the study of Flavins and Wickens (2001) where they used four �nancial assets
(three risky assets and a riskless) and one macroeconomic variable (in�ation). The risky assets were
UK equity, UK govenment bond and a short-term UK government bond. The risk-free asset was
a 30-day treasury bill. It is interesting to draw the conclusion that the modelling approach work
for Swedish stock data and macroeconomic variables and also that the model captures the recent
2007-2008 recession.
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For the future it can be interesting to investigate how the models performs on di�erent type of as-
sets, for example stocks from small cap, the bond market or on a di�erent market with more volatile
assets that on OMX30. Other improvements of the modelling technique would have been to use a
weighting procedure which takes in consideration that returns for �nancial data tend to have heavier
tails than the case for normally distributed returns. The univariate t-distribution can sometimes be
closer to reality when modelling �nancial asset returns, same for the portfolio but with multivari-
ate t-distribution. Also it would have been interesting to use a more dynamic volatility modelling
technique than the EWMA. The assumption that a constant λ = 0.96 capture all the variation in
the residuals might not be fully realistic but good enough to illustrate the example of re�nement of
the MPT model by Markowitz. Another thing to consider is the view of the macroeconomic factors
if they are considered as exogenous variables in the model, then a VARX model could be useful, for
deeper investigation of the model for manager C this is a suggestion of improvement.

36



Appendices

37



Appendix A

Plots for Portfolio 2-5

A.1 Portfolio 2

Portfolio 2 is formed by the following assets

• ABB
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Figure A.1: The stock price, Histogram, QQ-plot and Volatility Clustering of ABB, from January
2004 to May 2015

• Astra Zeneca
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Figure A.2: The stock price, Histogram, QQ-plot and Volatility Clustering of Astra Zeneca, from
January 2004 to May 2015

• Investor
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Figure A.3: The stock price, Histogram, QQ-plot and Volatility Clustering of Investor, from January
2004 to May 2015

• Lundin Petroleum
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Figure A.4: The stock price, Histogram, QQ-plot and Volatility Clustering of Lundin Petroleum,
from January 2004 to May 2015

• Nordea
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Figure A.5: The stock price, Histogram, QQ-plot and Volatility Clustering of Nordea, from January
2004 to May 2015

A.2 Portfolio 3

Portfolio 2 is formed by the following assets
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• Assa Abloy
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Figure A.6: The stock price, Histogram, QQ-plot and Volatility Clustering of Assa Abloy, from
January 2004 to May 2015

• Elektolux
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Figure A.7: The stock price, Histogram, QQ-plot and Volatility Clustering of Elektolux, from
January 2004 to May 2015

• Kinnevik
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Figure A.8: The stock price, Histogram, QQ-plot and Volatility Clustering of Investor, from January
2004 to May 2015

• SEB

SEB, Price

Year

V
al

ue
 o

f S
to

ck
, S

E
K

2004 2008 2012

20
80

SEB, Histogram

Log−returns

F
re

qu
en

cy

−0.6 −0.2 0.0 0.2 0.4

0
10

−2 −1 0 1 2

−
0.

6
0.

2

SEB, Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s SEB, Volatility Clustering

Time

ab
s(

se
b)

2004 2008 2012

0.
0

0.
4

Figure A.9: The stock price, Histogram, QQ-plot and Volatility Clustering of SEB, from January
2004 to May 2015

• Tele 2
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Figure A.10: The stock price, Histogram, QQ-plot and Volatility Clustering of Tele 2, from January
2004 to May 2015

A.3 Portfolio 4

Portfolio 2 is formed by the following assets

• Atlas Copco
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Figure A.11: The stock price, Histogram, QQ-plot and Volatility Clustering of Atlas Copco, from
January 2004 to May 2015
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• Skanska
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Figure A.12: The stock price, Histogram, QQ-plot and Volatility Clustering of Skanska, from Jan-
uary 2004 to May 2015

• Swedbank
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Figure A.13: The stock price, Histogram, QQ-plot and Volatility Clustering of Swedbank, from
January 2004 to May 2015

• Telia
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Figure A.14: The stock price, Histogram, QQ-plot and Volatility Clustering of Telia, from January
2004 to May 2015

• MTG
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Figure A.15: The stock price, Histogram, QQ-plot and Volatility Clustering of MTG, from January
2004 to May 2015

A.4 Portfolio 5

Portfolio 5 is formed by the following assets
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• Sandvik
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Figure A.16: The stock price, Histogram, QQ-plot and Volatility Clustering of Sandvik, from Jan-
uary 2004 to May 2015
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Figure A.17: The stock price, Histogram, QQ-plot and Volatility Clustering of SKF, from January
2004 to May 2015

• SCA
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Figure A.18: The stock price, Histogram, QQ-plot and Volatility Clustering of SCA, from January
2004 to May 2015

• Handelsbanken
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Figure A.19: The stock price, Histogram, QQ-plot and Volatility Clustering of Handelsbanken, from
January 2004 to May 2015

• Volvo
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Figure A.20: The stock price, Histogram, QQ-plot and Volatility Clustering of Volvo, from January
2004 to May 2015
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Appendix B

Weights and returns Portfolio 2-5

B.1 Portfolio 2

Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Weights A ABB 0.243 0.227 0.228 0.226 0.236 0.248 0.233 0.228 0.226

Weights B ABB 0.243 0.227 0.228 0.226 0.236 0.248 0.233 0.228 0.226

Weights C ABB 0.900 0.493 0.399 0.562 0.748 0.634 -0.543 1.466 0.833

Returns ABB 1.015 1.006 1.001 1.017 1.015 0.967 1.110 1.032 0.991

Weights A Astra 0.411 0.418 0.421 0.422 0.413 0.410 0.421 0.407 0.408

Weights B Astra 0.411 0.418 0.421 0.422 0.413 0.410 0.421 0.407 0.408

Weights C Astra -0.026 0.245 -0.013 0.330 0.310 0.084 0.497 0.455 0.146

Returns Astra 1.059 0.960 1.045 1.028 1.012 1.047 0.985 1.037 0.969

Weights A Investor 0.332 0.331 0.304 0.311 0.344 0.363 0.343 0.369 0.402

Weights B Investor 0.332 0.331 0.304 0.311 0.344 0.363 0.343 0.369 0.402

Weights C Investor 1.064 -0.530 0.939 0.097 -0.971 0.293 2.498 -1.936 -0.496

Returns Investor 1.053 0.978 1.033 1.063 1.025 1.052 1.102 1.030 1.002

Weights A Lundin 0.083 0.090 0.082 0.068 0.057 0.037 0.036 0.043 0.050

Weights B Lundin 0.083 0.090 0.082 0.068 0.057 0.037 0.036 0.043 0.050

Weights C Lundin -0.350 0.187 -0.303 -0.531 -0.137 0.156 -0.604 0.202 -0.093

Returns Lundin 1.072 0.914 0.878 0.984 1.080 0.988 1.082 0.980 1.139

Weights A Nordea -0.070 -0.065 -0.034 -0.026 -0.050 -0.057 -0.034 -0.047 -0.086

Weights B Nordea -0.070 -0.065 -0.034 -0.026 -0.050 -0.057 -0.034 -0.047 -0.086

Weights C Nordea -0.588 0.604 -0.021 0.542 1.050 -0.167 -0.849 0.813 0.611

Returns Nordea 0.995 1.025 0.997 0.996 0.991 1.170 1.041 0.951 0.993

Table B.1: The weights of the strategies of Portfolio 2 for managers A, B and C and the returns in
each time step
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B.2 Portfolio 3

Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Weights A Assa 0.671 0.672 0.667 0.685 0.684 0.690 0.692 0.681 0.695

Weights B Assa 0.804 0.092 -0.148 -0.106 0.854 0.668 0.036 0.679 0.522

Weights C Assa 0.410 -0.153 -0.454 -0.276 0.783 0.404 -0.181 0.610 0.345

Returns Assa 1.055 1.035 1.050 1.047 1.016 1.086 1.098 1.040 0.969

Weights A Elektro 0.103 0.102 0.117 0.115 0.122 0.112 0.118 0.121 0.107

Weights B Elektro -0.081 0.422 1.368 0.393 -0.097 0.262 0.876 0.067 0.314

Weights C Elektro -0.073 0.370 1.398 0.375 -0.160 0.285 0.949 0.086 0.313

Returns Elektro 1.051 1.037 1.107 1.075 1.014 1.109 1.057 0.932 1.017

Weights A Kinnevik 0.182 0.179 0.137 0.132 0.128 0.134 0.128 0.132 0.142

Weights B Kinnevik 0.159 0.501 0.231 0.414 0.248 0.138 0.277 0.418 0.243

Weights C Kinnevik 0.516 0.411 0.313 0.351 0.084 0.131 0.380 0.401 0.107

Returns Kinnevik 1.007 0.805 1.004 1.085 0.995 0.955 1.134 1.026 0.993

Weights A SEB -0.007 -0.006 -0.004 -0.019 -0.020 -0.023 -0.025 -0.035 -0.042

Weights B SEB 0.191 -0.200 -0.510 0.132 0.022 -0.129 -0.385 -0.348 -0.555

Weights C SEB 0.257 0.400 -0.246 0.496 0.483 0.187 -0.389 -0.239 -0.028

Returns SEB 1.003 1.044 0.983 1.043 1.015 1.006 1.061 0.962 1.017

Weights A Tele 2 0.052 0.053 0.083 0.087 0.086 0.088 0.086 0.101 0.099

Weights B Tele 2 -0.073 0.185 0.059 0.168 -0.028 0.061 0.196 0.184 0.476

Weights C Tele 2 -0.110 -0.029 -0.011 0.053 -0.190 -0.007 0.240 0.142 0.263

Returns Tele 2 1.053 0.990 1.084 1.008 1.006 0.977 1.055 1.045 1.093

Table B.2: The weights of the strategies of Portfolio 3 for managers A, B and C and the returns in
each time step
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B.3 Portfolio 4

Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Weights A Atlas 0.531 0.509 0.498 0.496 0.487 0.481 0.493 0.498 0.535

Weights B Atlas -0.048 0.707 0.549 0.564 0.650 0.789 0.048 0.596 0.168

Weights C Atlas -1.008 0.870 0.200 0.417 0.864 0.410 -0.504 0.492 0.072

Returns Atlas 0.991 1.004 1.044 0.998 1.032 1.119 1.087 1.039 0.938

Weights A Skanska 0.059 0.083 0.089 0.084 0.079 0.097 0.093 0.094 0.065

Weights B Skanska 0.717 -0.163 -0.278 -0.118 -0.042 -0.529 -0.158 -0.292 0.554

Weights C Skanska 1.182 0.090 -0.010 0.127 0.226 -0.230 0.092 -0.079 0.972

Returns Skanska 1.020 1.008 1.029 1.068 1.046 1.094 1.110 0.943 0.955

Weights A Swedbank 0.000 0.006 0.019 0.017 0.002 0.007 0.007 0.005 0.000

Weights B Swedbank -0.427 0.097 -0.032 0.227 0.246 0.163 0.168 0.589 -0.434

Weights C Swedbank 0.039 0.210 0.213 0.410 0.365 0.453 0.442 0.673 -0.145

Returns Swedbank 1.012 1.028 1.063 1.009 1.001 1.031 1.082 0.952 0.918

Weights A Telia 0.506 0.510 0.533 0.532 0.544 0.534 0.532 0.517 0.518

Weights B Telia 0.370 0.424 0.362 0.167 0.346 0.933 0.626 0.090 0.801

Weights C Telia 0.720 -0.338 0.313 -0.103 -0.470 0.808 0.923 -0.059 0.087

Returns Telia 0.997 0.969 1.019 1.045 0.950 1.010 1.041 1.034 0.949

Weights A MTG -0.096 -0.108 -0.139 -0.129 -0.111 -0.120 -0.125 -0.114 -0.118

Weights B MTG 0.389 -0.065 0.399 0.161 -0.199 -0.356 0.315 0.016 -0.089

Weights C MTG 0.067 0.168 0.284 0.149 0.016 -0.440 0.048 -0.027 0.014

Returns MTG 0.986 0.848 1.000 1.044 1.037 0.947 1.105 1.014 1.0573

Table B.3: The weights of the strategies of Portfolio 4 for managers A, B and C and the returns in
each time step
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B.4 Portfolio 5

Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Weights A Sandvik 0.531 0.509 0.498 0.496 0.487 0.481 0.493 0.498 0.535

Weights B Sandvik -0.248 0.011 -0.132 0.254 0.652 0.685 0.982 -0.047 0.982

Weights C Sandvik -1.367 0.084 -0.552 0.094 0.854 0.353 0.549 -0.256 0.817

Returns Sandvik 0.999 0.909 1.003 0.972 0.982 1.140 1.053 1.014 1.122

Weights A SKF 0.059 0.083 0.089 0.084 0.079 0.097 0.093 0.094 0.065

Weights B SKF 0.210 0.207 0.448 -0.406 0.283 -0.669 1.338 -0.308 -0.218

Weights C SKF 1.553 0.245 1.000 -0.171 0.111 -0.269 1.683 -0.081 0.023

Returns SKF 0.983 0.915 0.988 1.054 1.067 1.168 1.072 1.061 0.912

Weights A SCA 0.000 0.006 0.019 0.017 0.002 0.007 0.007 0.005 0.000

Weights B SCA -0.300 0.223 -0.202 1.350 -0.137 0.979 -0.009 0.736 0.063

Weights C SCA -0.635 -0.110 -0.486 1.078 -0.393 0.743 0.139 0.621 -0.142

Returns SCA 0.996 1.017 0.977 1.052 0.958 1.214 0.984 0.977 1.085

Weights A Handelsbanken 0.506 0.510 0.533 0.532 0.544 0.534 0.532 0.517 0.518

Weights B Handelsbanken 1.355 0.606 1.264 -0.542 0.583 -0.358 -0.466 -0.008 0.441

Weights C Handelsbanken 2.031 0.627 1.558 -0.422 0.605 -0.205 -0.267 0.066 0.395

Returns Handelsbanken 1.008 1.023 1.038 1.029 1.030 1.086 1.092 0.919 0.957

Weights A Volvo -0.096 -0.108 -0.139 -0.129 -0.111 -0.120 -0.125 -0.114 -0.118

Weights B Volvo -0.018 -0.048 -0.378 0.344 -0.381 0.363 -0.846 0.627 -0.268

Weights C Volvo -0.582 0.155 -0.520 0.420 -0.178 0.378 -1.103 0.649 -0.093

Returns Volvo 0.993 0.925 1.083 0.983 1.035 1.128 1.017 1.047 1.090

Table B.4: The weights of the strategies of Portfolio 5 for managers A, B and C and the returns in
each time step
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